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Abstract. Feature weighting is critical in machine learning, particularly
under noisy, high-dimensional, or evolving data. We propose CKFW-
Net++, a hybrid architecture that advances Kalman-based feature weight-
ing by incorporating: (i) an adaptive Unscented Kalman Filter (UKF)
with online noise estimation, (ii) entropy-driven chaotic perturbations
that activate only under stagnation or low entropy, (iii) sparse normal-
ized gating for interpretability and stability, (iv) a multi-objective robust
loss balancing accuracy, sparsity, temporal smoothness, and consistency,
and (v) stability-enhancing projections with EMA smoothing.
Experiments on UCI benchmarks (Breast Cancer, Diabetes) and syn-
thetic noisy datasets show that CKFW-Net++ improves accuracy, ro-
bustness, and interpretability compared to logistic regression, SVMs,
Random Forests, and prior CKFW-Net. We provide ablation studies and
interpretability analysis to demonstrate the contribution of each compo-
nent.

Keywords: Kalman Filter · Unscented Kalman Filter · Chaos Theory
· Feature Weighting · Robust Machine Learning · Sparse Gating

1 Introduction
Machine learning models rely heavily on the quality and relevance of input fea-
tures. In high-dimensional domains, irrelevant or noisy features can obscure the
true signal, leading to poor generalization, reduced interpretability, and vulnera-
bility to distributional shifts. While feature selection methods attempt to remove
uninformative attributes, they often enforce binary decisions (retain or discard),
which can discard partially useful information. Feature weighting provides a
more nuanced alternative by assigning continuous importance scores to features,
enabling models to focus proportionally on the most informative signals [11,2].

However, existing feature weighting strategies suffer from important limita-
tions. Static weighting schemes, such as those embedded in linear models or clas-
sical regularizers (e.g., LASSO), are unable to adapt once training has started
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and fail when distributions evolve. Dynamic weighting mechanisms, including
attention-based neural modules and reinforcement learning approaches, offer
flexibility but frequently converge prematurely, amplify noise, or lack robust-
ness to adversarial perturbations [5,1]. Moreover, most existing methods treat
feature importance as a deterministic process, overlooking the stochastic and
nonlinear nature of real-world data streams [9].

To overcome these limitations, we propose CKFW-Net++, a novel frame-
work that unifies adaptive state estimation, chaos theory, and robust optimiza-
tion into a single feature weighting paradigm. Specifically, CKFW-Net++ lever-
ages the Unscented Kalman Filter (UKF) to recursively update feature weights,
while dynamically adapting process and measurement noise covariances through
Innovation-Based Adaptive Estimation. To prevent stagnation and premature
convergence, the framework introduces entropy-guided chaotic perturbations, in-
jecting structured randomness when the system exhibits low entropy or loss stag-
nation [3,8]. Furthermore, CKFW-Net++ enforces stability and interpretability
through sparse normalized gating, mapping weights into probability-like scores
constrained on the simplex. A robust multi-objective loss balances accuracy,
sparsity, temporal smoothness, and adversarial consistency, ensuring resilience
under noise and distribution shifts [10,6].

Our contributions are fourfold:
– We introduce the first integration of adaptive UKF feature weighting with

online estimation of Q and R, reducing reliance on fragile hyperparameters.
– We propose a novel entropy-driven chaotic perturbation mechanism that

adaptively regulates exploration to avoid premature convergence.
– We design a sparse normalized gating layer, ensuring interpretability, numer-

ical stability, and parsimonious feature usage.
– We validate CKFW-Net++ through comprehensive experiments on bench-

mark datasets and noisy synthetic tasks, including ablation studies, robust-
ness analyses, and interpretability evaluations [7,4].

By combining principled estimation theory, nonlinear chaotic dynamics, and
modern machine learning practices, CKFW-Net++ establishes a new direction
for adaptive and interpretable feature weighting. The results indicate that the
proposed approach not only improves predictive performance but also enhances
robustness and interpretability, making it a promising candidate for deployment
in safety-critical domains such as healthcare, finance, and industrial monitoring.

2 Related Work
2.1 Feature Weighting
Traditional approaches rely on filter methods (e.g., statistical correlations, mu-
tual information), wrapper methods (iterative search guided by classifiers), and
embedded methods such as LASSO and Random Forest importance. These meth-
ods, although effective in static contexts, are limited when distributions drift or
noise levels vary significantly. Recent efforts integrate feature weighting into neu-
ral networks through attention mechanisms, but they can become unstable and
hard to interpret under uncertainty.
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2.2 Adaptive Noise Estimation
In state-space models, accurate tuning of process noise Q and measurement
noise R is critical. Innovation-Based Adaptive Estimation (IAE) and covariance
matching techniques automatically adapt Q, R online, reducing sensitivity to
hyperparameters. Such techniques are well established in navigation and control,
but rarely extended to feature weighting for ML tasks. Their integration allows
dynamic adaptation to evolving domains without manual calibration.
2.3 Chaos in ML
Chaos theory provides deterministic yet unpredictable signals. Chaotic sequences
have been used to improve exploration in evolutionary algorithms, PSO, and GA.
More recently, chaos has been linked to regularization in deep learning, acting as
a source of structured noise that avoids overfitting. However, most works employ
static chaos injection; entropy-guided chaos that adapts to training dynamics
remains unexplored.
2.4 Robust Loss Functions
Robust losses such as Huber, Tukey, and adversarial consistency objectives are
designed to mitigate the effect of outliers or adversarial perturbations. They
have proven effective in computer vision and time-series tasks. However, in fea-
ture weighting settings, robust losses are rarely combined with dynamic state
estimation and chaos-driven exploration. This motivates the integration of a
multi-objective robust loss into CKFW-Net++.

3 Proposed Method: CKFW-Net++
We present CKFW-Net++, a framework for adaptive and interpretable fea-
ture weighting that integrates principles from estimation theory, chaos dynamics,
and robust optimization. The method is designed to (i) adapt feature weights in
non-stationary data streams, (ii) prevent premature convergence via structured
perturbations, (iii) provide interpretable and sparse gating, and (iv) maintain
robustness to noise and adversarial perturbations.
3.1 Adaptive UKF for Feature Weighting
We model feature weights as latent states in a nonlinear dynamical system. At
step t, the state and observation are defined as:

wt = wt−1 + ηt, ηt ∼ N (0, Qt), (1)

ŷt = fθ(Xt ⊙ wt), vt = yt − ŷt, (2)

where Xt is the feature matrix, yt the output, and fθ(·) a predictor such as a
neural network.

Unlike conventional Kalman filters with fixed noise covariances, CKFW-Net++
employs an adaptive Unscented Kalman Filter (UKF) with Innovation-Based
Adaptive Estimation (IAE). The noise terms are updated online:

Rt ← (1− β)Rt−1 + β Cov(vt), (3)
Qt ← (1− β)Qt−1 + β diag

(
(wt−1 − w̄)2)

, (4)
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where w̄ is the exponential moving average of past weights. This adaptation
allows the model to track distributional drift and reduces reliance on fragile
hyperparameters.
3.2 Entropy-Guided Chaotic Perturbations
Standard adaptive filters risk stagnation when innovations converge to low vari-
ance. To counter this, CKFW-Net++ introduces chaos perturbations that acti-
vate only when exploration is required.

Permutation entropy Ht ∈ [0, 1] is computed from the innovations vt, serving
as a measure of uncertainty. A stagnation score st is derived from an exponential
moving average of loss variations. The perturbation intensity is then:

αt = αmax(1−Ht)σ(st), (5)
where σ(·) is a logistic squash ensuring smooth adaptation.

Chaotic signals are generated by mixing logistic and tent maps:
ξt = norm

(
Logistic(ut)⊕ Tent(u′

t)
)
, (6)

and applied to the UKF estimate:
wt = ΠW (wUKF

t + αtξt). (7)
Here ΠW (·) is a projection operator ensuring stability by constraining weights
to valid ranges.
3.3 Sparse Normalized Gating
While wt captures adaptive weight dynamics, interpretability requires normal-
ized and sparse feature importances. We introduce a gating transformation:

gt = softmax(wt/T ), T ↓ Tmin. (8)
This ensures

∑
gt = 1, preventing divergence and yielding probability-like im-

portances. Sparsity is promoted via L1 regularization or Hard-Concrete relax-
ations, encouraging parsimonious selection of features while retaining stability.
3.4 Workflow of CKFW-Net++
The overall pipeline of CKFW-Net++ is composed of six sequential stages: (i)
adaptive UKF state estimation, (ii) entropy and stagnation analysis, (iii) chaos-
driven perturbation, (iv) sparse normalized gating, (v) neural classification, and
(vi) robust multi-objective learning.

This step-by-step process is illustrated in Figure 1, which highlights the logical
order of operations from raw input data to the final robust output.
3.5 Robust Multi-Objective Loss
CKFW-Net++ is trained with a robust objective combining accuracy, sparsity,
smoothness, and consistency:

L = Ltask(y, ŷ) + λ1∥gt∥1 + λ2∥gt − gt−1∥2
2

+ λ3 Eϵ∼N (0,σ2)

[
Ltask(y, fθ((X + ϵ)⊙ gt))

]
. (9)

Each term serves a distinct purpose:
– Ltask ensures predictive accuracy.
– ∥gt∥1 enforces sparsity in feature usage.
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Step 1: Adaptive UKF
Estimate feature weights wt with online Qt, Rt update

Step 2: Entropy + Stagnation Analysis
Compute Ht (uncertainty) and st (loss drift)

Step 3: Chaotic Perturbation
Inject logistic + tent chaos if Ht low or stagnation detected

Step 4: Sparse Normalized Gating
Map wt to gates gt = softmax(wt/T ) with L1 sparsity

Step 5: Neural Classifier fθ

Train classifier with reweighted inputs Xt ⊙ gt

Step 6: Robust Multi-Objective Loss
L = Ltask + λ1∥gt∥1 + λ2∥gt − gt−1∥2 + λ3Eϵ[Ltask]

Input Data Xt

Predicted Output ŷt

Fig. 1. Step-by-step workflow of CKFW-Net++: adaptive UKF estimation, entropy-
stagnation analysis, chaos injection, sparse gating, neural classification, and robust
learning.

– ∥gt − gt−1∥2
2 enforces temporal smoothness.

– The expectation over noise ensures robustness against perturbations.
3.6 Summary
Overall, CKFW-Net++ unifies adaptive state estimation, entropy-guided chaos,
sparse gating, and robust learning. By combining these components, the frame-
work achieves adaptability, interpretability, and resilience under dynamic and
noisy conditions—three properties rarely satisfied simultaneously in existing fea-
ture weighting approaches.

4 Experimental Setup
4.1 Datasets
We evaluate the proposed CKFW-Net++ on three datasets of increasing com-
plexity: (i) Breast Cancer (UCI) with 569 samples and 30 features, (ii)
PIMA Diabetes (UCI) with 768 samples and 8 features, (iii) a Synthetic
noisy dataset constructed with Gaussian and adversarial perturbations to em-
ulate real-world uncertainty and hostile input scenarios.

4.2 Preprocessing
All features are normalized to [0, 1]. A 70/30 train-test split is repeated in a 5-fold
cross validation to ensure robustness of the reported metrics. Missing values are
imputed via median statistics, while oversampling with SMOTE is applied when
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imbalance is present. This guarantees that no dataset-specific bias dominates
the evaluation.

4.3 Baselines
We compare CKFW-Net++ against representative models: Logistic Regression,
SVM with static weighting, Random Forest, and CKFW-Net (Kalman + chaos).
These baselines are standard in clinical and noisy benchmark tasks, allowing fair
assessment of our contributions.

4.4 Results on Datasets
The performance is reported in terms of Accuracy, F1-score, and AUC. Typ-
ical baseline values on PIMA Diabetes are in the range of 0.72–0.75 Accu-
racy and 0.63–0.66 F1-score. Our approach achieves 0.75 Accuracy and 0.67 F1
(Fig. 2), matching or slightly surpassing strong baselines on this notoriously dif-
ficult dataset. On the Breast Cancer dataset, baseline models generally reach
0.88–0.91 Accuracy and ∼0.85 F1. CKFW-Net++ pushes further to 0.92 Accu-
racy and 0.88 F1 (Fig. 3), providing consistent gains. On the Synthetic noisy
dataset, traditional classifiers typically degrade to 0.90–0.92 Accuracy under
perturbations, while our model maintains 0.94 Accuracy and an AUC of 0.99
(Fig. 4), clearly demonstrating superior robustness to Gaussian and adversarial
noise.

Fig. 2. CKFW-Net++ Learning Curves on PIMA Diabetes Dataset. Our method
matches or slightly surpasses typical baseline performance, with stable convergence.
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Fig. 3. CKFW-Net++ Learning Curves on Breast Cancer Dataset. Accuracy and F1-
score exceed the range of common baselines, confirming the effectiveness of adaptive
weighting.

Fig. 4. CKFW-Net++ Results on Synthetic Noisy Dataset. Unlike baselines, CKFW-
Net++ remains robust to Gaussian and adversarial perturbations, with near-optimal
AUC.



8 Fabio Berberi and Paolo Mercorelli

5 Results and Discussion
5.1 Main Results
Table 1 summarizes the results. CKFW-Net++ systematically outperforms base-
lines in Accuracy and F1-score, while also providing stronger robustness to per-
turbations.

Table 1. Performance comparison across baselines.

Method Accuracy F1-score Robustness

Logistic Regression 0.85 0.82 Low
SVM Static 0.87 0.84 Medium
Random Forest 0.89 0.86 Medium
CKFW-Net 0.92 0.90 High
CKFW-Net++ 0.95 0.93 Very High

5.2 Ablation Study
An ablation (Table 2) confirms that chaos injection, sparse gating, and robust
loss each contribute to performance. Removing them reduces robustness or ac-
curacy, while the full model delivers the strongest results.

Table 2. Contribution of CKFW-Net++ components.

Variant Accuracy Robustness

Without Chaos 0.92 High
Without Sparse Gating 0.93 High
Without Robust Loss 0.93 Medium
Full CKFW-Net++ 0.95 Very High

5.3 Robustness Tests
Table 3 reports the robustness evaluation under Gaussian noise and adversarial
perturbations. Classical baselines such as Logistic Regression and SVM show
a marked drop in performance, with accuracies decreasing to 0.74 and 0.70
respectively, and are therefore categorized as High degradation. Random For-
est provides moderate robustness, with accuracies between 0.78 and 0.81, while
CKFW-Net achieves higher stability (0.88 under noise and 0.83 under adversar-
ial attacks). Finally, CKFW-Net++ consistently maintains the highest accuracy
(0.94 under noise and 0.93 under adversarial), with only Low degradation. These
results confirm that CKFW-Net++ offers superior resilience to perturbations,
making it especially suitable for safety-critical tasks where robustness is essen-
tial.
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Table 3. Robustness Results under Gaussian noise and adversarial perturbations.

Method Accuracy (Noise) Accuracy (Adv. Attack) Degradation

Logistic Regression 0.74 0.72 High
SVM Static 0.76 0.70 High
Random Forest 0.81 0.78 Medium
CKFW-Net 0.88 0.83 Medium
CKFW-Net++ 0.94 0.93 Low

5.4 Interpretability of Gates
An additional advantage of CKFW-Net++ lies in its interpretability. The sparse
gating mechanism does not merely improve predictive performance but also high-
lights the most influential features driving the model’s decisions. For instance,
in the PIMA Diabetes dataset, the gates consistently emphasize glucose-related
attributes, while in the Breast Cancer dataset, cell size and shape emerge as
dominant. This alignment between model-selected features and domain knowl-
edge provides a layer of transparency rarely achieved in black-box classifiers. It
allows practitioners to better trust and understand the model, bridging the gap
between predictive accuracy and clinical or scientific interpretability.

6 Conclusion
We proposed CKFW-Net++, an adaptive framework that integrates Un-
scented Kalman Filtering (UKF), entropy-driven chaotic dynamics, sparse gat-
ing, and robust loss functions. Our experimental evaluation demonstrated consis-
tent improvements in classification accuracy, F1-score, and robustness to pertur-
bations, while also enhancing interpretability through feature-wise sparse gates.

Beyond outperforming common baselines, CKFW-Net++ proved resilient un-
der both Gaussian noise and adversarial attacks, making it particularly suit-
able for safety-critical tasks such as healthcare monitoring. Moreover, the inter-
pretability offered by the gating mechanism bridges the gap between predictive
accuracy and expert knowledge, providing a valuable tool for practitioners.

Future work will focus on several directions:

– Scaling to larger and deeper architectures: extending CKFW-Net++
to convolutional and transformer-based backbones for handling high-dimensional
data such as medical imaging and time-series.

– Benchmarking on large-scale datasets: testing on datasets such as MIMIC-
III (clinical time series), ImageNet (vision), and financial transaction records,
to validate robustness and generalization in more complex domains.

– Surrogate-assisted optimization: integrating surrogate models (e.g., Gaus-
sian Processes or Random Forest regressors) to reduce computational cost
during chaotic search and Kalman updates.

– Online learning and streaming data: adapting CKFW-Net++ to dy-
namic environments where data arrives sequentially, enabling real-time adap-
tation in IoT and industrial monitoring scenarios.
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– Explainability tools: coupling sparse gating with SHAP/LIME explana-
tions to provide richer interpretability beyond feature weighting alone.

These extensions will enable CKFW-Net++ to scale towards large and het-
erogeneous datasets, strengthening its applicability in healthcare IoT, financial
anomaly detection, industrial fault prediction, and other domains where robust-
ness and transparency are essential.
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