
Maximizing or Minimizing Chaos in Nonlinear Maps: A
Kalman Filter–Guided Particle Swarm Optimization

Approach

Fabio Berberia,∗, Paolo Mercorellib

aUniversity of Siena, Via Roma 56, 53100 Siena, Italy
bLeuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany

Abstract

This paper presents a framework to identify hyperparameters that either
maximize or minimize chaotic behavior in parameterized nonlinear systems.
A Particle Swarm Optimization (PSO) engine explores the n-dimensional
search space, while a nonlinear Kalman filter (Extended or Unscented) acts
as a chaos detector. For each candidate, the system is simulated and the
filter’s innovation statistics, local divergence, and permutation entropy are
combined into a composite chaos metric. This metric serves as the PSO
fitness, guiding particles toward regions of either maximal or minimal unpre-
dictability, depending on the application. The approach couples the robust-
ness of Kalman-based estimation with PSO’s global search, enabling efficient,
filter-driven exploration for objectives ranging from cryptography and secure
communications (chaos maximization) to control and stabilization of nonlin-
ear systems (chaos minimization).

Keywords: Chaos, Particle Swarm Optimization, Kalman Filter, Nonlinear
Dynamics, Permutation Entropy, Lyapunov Exponent

∗Corresponding author. ORCID: 0009-0004-8825-8707
Email addresses: f.berberi@student.unisi.it (Fabio Berberi),

paolo.mercorelli@leuphana.de (Paolo Mercorelli)
1ORCID (Mercorelli): 0000-0003-3288-5280

Preprint submitted to Chaos, Solitons and Fractals October 3, 2025



1. Introduction

Chaotic systems, with their sensitivity to initial conditions and nonlinear
dynamics, are increasingly relevant in secure communications, cryptography,
and random number generation. In control engineering, however, chaos is
undesirable and must often be suppressed to improve stability.

Tuning system parameters to achieve high or low chaos is crucial, but tra-
ditional exhaustive or local search methods are inefficient in high-dimensional
spaces. Recent studies have shown that combining Particle Swarm Optimiza-
tion (PSO) with filtering techniques can improve estimation and optimization
stability, particularly when Kalman-based methods are employed [1, 2, 3, 4].
In parallel, PSO variants enhanced with chaotic dynamics and hybrid strate-
gies have demonstrated significant improvements in exploration and preven-
tion of premature convergence [5, 6, 7].

Another key aspect is the quantification of chaos, where entropy- and
Lyapunov-based measures have been widely used to characterize unpredictabil-
ity and dynamical complexity [8, 9, 10, 11, 12, 13, 14, 15]. These indicators
provide robust tools for distinguishing between regular and chaotic regimes
in both discrete-time maps and continuous nonlinear systems.

Here, we propose a different perspective: PSO is coupled with a non-
linear Kalman Filter (EKF or UKF) used as a chaos detector rather than
as a guide for swarm trajectories. By leveraging Kalman-based innovation
statistics and classical chaos measures such as permutation entropy and Lya-
punov exponents, the approach enables efficient optimization toward either
maximization or minimization of chaotic behavior. This flexibility makes
the method suitable for diverse applications, ranging from cryptography and
secure communications to stabilization and control of nonlinear systems [16].

2. Proposed Approach

2.1. Problem Definition
Let S(θ) be a parameterized nonlinear system, where θ ∈ Rn denotes

the set of n hyperparameters. The objective is to determine the parameter
vector θ∗ that either maximizes or minimizes a defined measure of chaotic
behavior.

As illustrated in Figure 1, the chaotic behavior of the system is modeled
by a function Fc with coefficient X. This coefficient is transformed through
an operator T (·) into a new value X ′, which can either:

2



• Reduce the chaotic intensity (X ′ < X), or

• Increase the chaotic intensity (X ′ > X),
depending on the optimization goal.

The framework accommodates both discrete-time maps and continuous-
time nonlinear dynamical models, as well as any process capable of exhibiting
chaotic dynamics. Two complementary optimization objectives are consid-
ered:

• Chaos maximization:

θ∗ = arg max
θ

J(θ),

relevant for cryptography, secure communications, and random number
generation.

• Chaos minimization:

θ∗ = arg min
θ

J(θ),

relevant for stabilization in control systems, vibration reduction, or
noise suppression.

The optimization relies on Particle Swarm Optimization (PSO) with the
Domain-as-Particle structure. Kalman-enhanced PSO approaches have been
developed to improve swarm guidance and stability. In this work, however, a
nonlinear Kalman filter is employed as a chaos detector, providing the fitness
J(θ) by simulating the system with candidate parameters, filtering outputs,
and aggregating innovation variance, permutation entropy, and Lyapunov
exponents.

2.2. Chaos Quantification via Kalman Filter
The chaos metric J(θ) is defined as a weighted combination of three indi-

cators derived from the system’s simulated response and processed through
a nonlinear Kalman filter.

1. Innovation variance σ2
ν :

σ2
ν = 1

T

T∑
k=1

ν2
k , (1)

where νk denotes the innovation at time step k and T is the simulation
length.

3



Chaotic
function

Fc

coefficient X

Transformation
function T (·) OR

Reduced chaos
coefficient X ′

(X ′ < X)

Increased chaos
coefficient X ′

(X ′ > X)

input X output X′

chaotic source
operator T : X 7→ X′

Figure 1: Transformation of a chaotic function Fc through operator T (·). The output
coefficient X ′ can be reduced (X ′ < X) or increased (X ′ > X) depending on the opti-
mization objective.

2. Permutation entropy Hperm: Normalized between 0 and 1 via the
Bandt–Pompe method over sliding windows.

3. Maximum Lyapunov exponent λmax: Estimates the average expo-
nential divergence of nearby trajectories.

The composite chaos metric is:

J(θ) = w1 σ2
ν + w2 Hperm + w3 λmax, (2)

with nonnegative weights (w1, w2, w3). For chaos maximization, PSO in-
creases J(θ); for minimization, it decreases it.

The Kalman filter (EKF or UKF) provides innovations and denoised state
estimates for computing both λmax and Hperm. Parameter-space exploration
uses the Domain-as-Particle PSO, partitioning the search space into sub-
domains acting as independent PSO particles. The weights (w1, w2, w3) are
dynamically tuned via a Meta-PSO.

3. PSO Search Strategy

3.1. Global Domain Partitioning
We use the Domain-as-Particle approach. The search space (global do-

main W) is divided into subdomains Dj arranged in a grid (Fig. 2). Each
subdomain is separated by spacing s, allowing independent local optimization
while preserving global movement.

4



Several studies highlight strategies to balance exploration and exploita-
tion in PSO. For example, some approaches integrate chaotic dynamics. In
contrast, the Domain-as-Particle method introduces structural exploration.

Global weight space W

Dj

Dj

Dj

Dj

Dj

Dj

Dj

Dj

Dj

L s

Figure 2: Weight-space partitioning: W is partitioned into a 3 × 3 grid of subdomains Dj .

3.2. Local Search Within Subdomains
Each subdomain Dj is treated as a single large particle and is equipped

with a local PSO. The outer PSO updates the position of each Dj in W ,
while the inner PSO searches for the optimal θ inside Dj. Initialization uses
a uniform grid of candidate particles (Fig. 3).

Dj

Figure 3: A subdomain Dj containing a uniform interior grid of candidate particles.

3.3. Characteristic Vector and Update Rule
At each global iteration, within Dj the top K particles (by J(θ)) are

selected to compute a characteristic vector vj. Domain updates combine

5



inertia, personal best, global best, and neighbor influence:

∆j
p = ϕp rp

(
pj − c(t−1)

j

)
, ∆j

n = ϕn rn

(
nj − c(t−1)

j

)
, (3)

∆j
g = ϕg rg

(
g − c(t−1)

j

)
, v(t)

j = ω v(t−1)
j + ∆j

p + ∆j
n + ∆j

g, (4)

c(t)
j = c(t−1)

j + v(t)
j . (5)

When a domain moves into a new region, a fresh grid of particles is
generated and a new vj is computed. Figure 4 illustrates domain motion
and neighbor influence.

Characteristic vector

Neighbor influence

Initial subdomain

Moved subdomain

Initial center

Updated center

Figure 4: Characteristic vector with neighbor influence: initial subdomains (solid), moved
subdomains (dotted), and centers.

Global domain W

Movement direction

Initial subdomain
Moved subdomain
Initial centerUpdated center

Figure 5: Domain movements inside W after one iteration.

6



4. Integration of Kalman and PSO

The framework integrates a Kalman filtering stage into the Domain-as-
Particle PSO (Fig. 6).

1) PSO proposes parameters θ(i)

2) Reset Kalman: set x̂0, P0, models f , h

3) Simulate system with θ(i) to get y1:T

4) Kalman loop for k = 1 . . . T
– State prediction

– Output prediction
– Innovation νk

– State update

5) Compute indicators: σ2
ν , Hperm, λmax

6) Fitness to PSO: J(θ(i))

Stop?

Output best θ⋆ and J(θ⋆)

Yes

No

Figure 6: PSO–Kalman loop.

4.1. Stopping Criteria and Convergence
The algorithm stops when one or more criteria are met: (i) maximum

global iterations tmax; (ii) objective stagnation; (iii) velocity decay; (iv) time
limit. Convergence is declared when velocity decay and objective stagnation
occur simultaneously.

7



4.2. Computational Considerations
The Domain-as-Particle PSO uses an outer PSO over ND domains and

an inner PSO in each domain with K particles. With Tg global iterations
and Tl local iterations, the complexity is O(Tg · ND · Tl · K · n). The approach
is highly parallelizable. Communication overhead for neighbor influence is
modest relative to objective evaluations.

4.3. Potential Applications
Applications include hyperparameter optimization, feature selection, con-

trol tuning (maximization), and engineering design, energy reduction, error
minimization (minimization). Advantages over classical PSO include pre-
served diversity, avoidance of premature convergence, and natural distributed
computing.

5. Experimental Setup

To assess the effectiveness of the proposed framework, we conduct exper-
iments on two canonical chaotic systems, representative of one-dimensional
and two-dimensional nonlinear dynamics: the Logistic map and the Ikeda
map, respectively. The objective is to determine parameter configurations
that either amplify or suppress chaotic behavior, as quantified by the com-
posite chaos metric

J(θ) = w1σ
2
ν + w2Hperm + w3λmax. (6)

The swarm optimization procedure employs the following settings: inertia
weight ω = 0.7, personal influence ϕp = 1.5, neighborhood influence ϕn = 1.0,
and global influence ϕg = 1.5, with random coefficients rp, rn, rg ∼ U(0, 1).
Each subdomain is initialized with 20 particles; after Tlocal = 5 local itera-
tions, the top K = 5 particles are selected to update the characteristic vector.
The global search space is partitioned into a 3 × 3 grid of nine subdomains,
thereby ensuring balanced exploration and distributed diversity preservation.

The computational environment consists of Python 3.11, with numerical
routines implemented in NumPy and SciPy. Permutation entropy is computed
via the Bandt–Pompe approach, while maximum Lyapunov exponents are
estimated using variational methods. The filtering stage employs a nonlinear
Kalman filter implementation. Visualization is performed with Matplotlib.
Hardware specifications are: Intel® i7-13700H CPU, 32 GB RAM, NVIDIA®

8



RTX 4060 GPU (not explicitly required). Each experimental configuration is
repeated 30 times under independent random seeds, and results are reported
as mean ± standard deviation to capture robustness across trials.

5.1. Comparative Results Overview
Figure 7 illustrates representative outcomes for chaos minimization and

maximization in both the Logistic and Ikeda systems. Each trajectory high-
lights the progressive evolution of the chaos index J(θ), where minimization
trends reveal convergence towards regularized regimes, while maximization
trajectories accentuate divergence and unpredictability. The distinct profiles
confirm that the proposed filter-guided PSO can effectively steer the search
toward contrasting dynamical objectives.

Minimization of chaos in the Logistic Map Maximization of chaos in the Logistic Map

Minimization of chaos in the Ikeda Map Maximization of chaos in the Ikeda Map

Figure 7: Comparative performance of the proposed framework on Logistic and Ikeda
maps for both minimization and maximization objectives. Each panel depicts the best-
performing trajectory of J(θ), showcasing the flexibility of the method in steering nonlinear
dynamics toward desired chaotic regimes.

5.2. Convergence Analysis
The convergence behavior of the algorithm reveals heterogeneous dynam-

ics across subdomains. For instance, in the Ikeda minimization task, a subset

9



of domains rapidly approaches a low-chaos solution, while others stagnate in
suboptimal regions. Conversely, in the Logistic maximization scenario, sev-
eral domains progressively enhance the chaos index, while others plateau
prematurely. This divergence across domains underscores the value of the
Domain-as-Particle paradigm in maintaining exploration and mitigating pre-
mature convergence, a recurring limitation in classical PSO frameworks.

5.3. Classical PSO vs. Domain-as-Particle PSO
To further quantify the benefits of the proposed approach, we compare it

against classical PSO in the task of chaos maximization for the Logistic map.
As shown in Figure 8, the Domain-as-Particle variant consistently identifies
high-performing regions within the first iterations, whereas the standard PSO
exhibits slower improvement and early stagnation. The experimental condi-
tions for both algorithms are summarized in Table 1, ensuring fairness in the
comparison.

Table 1: Parameter settings for Domain-as-Particle PSO versus Classical PSO in Logistic
map experiments.

Domain-as-Particle PSO Classical PSO

global_bounds = (3.5, 4.0) bounds = (3.5, 4.0)
num_domains = 5 dim = 5
num_particles = 100 num_particles = 100
top_k = 10 iterations = 20
local_iters = 3 w1, w2, w3 = 1.0
global_iters = 3 inertia (ω) = 0.7
w1, w2, w3 = 1.0 c1, c2 = 1.5
– vmax_frac = 0.1
– seed = 42

6. Computation Time and Future Directions

Although the proposed Domain-as-Particle PSO demonstrates superior
exploration capacity, its computational complexity is inherently higher than
that of the classical PSO, owing to the two-level optimization and domain
communication overhead. Nevertheless, the algorithm is highly paralleliz-
able, making it compatible with modern multi-core and distributed comput-
ing infrastructures.

10



Figure 8: Performance comparison between Domain-as-Particle PSO (left) and Classical
PSO (right) for chaos maximization in the Logistic map. The Domain-as-Particle variant
exhibits faster convergence and superior exploration capabilities, whereas the classical
approach shows slower improvement and premature stagnation.

To alleviate the computational burden, future research will explore surrogate-
assisted strategies, whereby lightweight machine learning models (e.g., Ran-
dom Forest, Gradient Boosting) are trained online to approximate candidate
evaluations and pre-filter suboptimal regions. Such surrogate learning has
already proven effective in heuristic optimization, agent-based calibration,
and PSO variants with forecasting modules. Beyond methodological refine-
ments, an additional avenue of application lies in cryptography and secure
communications, where maximization of chaotic dynamics can contribute to
enhanced unpredictability and resilience against adversarial attacks.

References

[1] J. Song, L. Wang, et al., Maximum likelihood-based extended kalman
filter for dynamic estimation in COVID-19 spread, Chaos, Solitons
Fractals 146 (2021) 110922.

[2] V. E. Papageorgiou, N. Papageorgiou, E. Sideris, An improved
epidemiological-unscented kalman filter with dynamic parameter esti-
mation, Chaos, Solitons
Fractals 166 (2023) 112914.

[3] D. B. Kara, M. E. Taha, et al., Degradation assessment of an igbt with
recurrence analysis and kalman filter based data fusion, Chaos, Solitons
Fractals 186 (2024) 115224.

11



[4] W. Yuan, X. He, et al., Stealthy fdi attacks on modified kalman filtering
in cyber–physical systems, Chaos, Solitons
Fractals 179 (2024) 114453.

[5] B. Alatas, Chaos embedded particle swarm optimization algorithms,
Chaos, Solitons
Fractals 40 (4) (2009) 2004–2016.

[6] L. dos Santos Coelho, A quantum particle swarm optimizer with chaotic
mutation, Chaos, Solitons
Fractals 37 (5) (2008) 1409–1418.

[7] Y. Zhang, Q. Xu, et al., A particle swarm optimization algorithm with
empirical balance, Chaos, Solitons
Fractals: X 10 (2023) 100089.

[8] S. J. Watt, Permutation entropy revisited, Chaos, Solitons
Fractals 120 (2019) 95–99.

[9] X. Zhao, Y. Zhang, J. Cao, W. Zhang, Permutation transition entropy:
Measuring the dynamical complexity of financial time series, Chaos,
Solitons
Fractals 139 (2020) 109962.

[10] B. R. R. Boaretto, A. A. F. Loureiro, L. Zunino, O. A. Rosso, Spatial
permutation entropy distinguishes resting brain states, Chaos, Solitons
Fractals 171 (2023) 113453.

[11] H. Li, J. Cao, et al., Determining the lyapunov exponent spectrum of
fractional-order systems, Chaos, Solitons
Fractals 168 (2023) 113167.

[12] J. Gancio, G. Mindlin, et al., Lyapunov exponents and extensivity of
strongly coupled dynamical systems, Chaos, Solitons
Fractals 178 (2024) 114392.

[13] J. H. Argyris, G. Faust, M. Haase, On the influence of noise on the
largest lyapunov exponent, Chaos, Solitons
Fractals 9 (6) (1998) 947–958.

12



[14] T. Zhao, H. Chen, Y. Deng, Information fractal dimension of random
permutation set, Chaos, Solitons
Fractals 174 (2023) 113883.

[15] T. Zhao, Y. Deng, Linearity in deng entropy, Chaos, Solitons
Fractals 178 (2024) 114388.

[16] L. Minati, M. Frasca, et al., Flatness-based real-time control of experi-
mental analog chua’s system, Chaos, Solitons
Fractals 177 (2023) 114274.

13


	Introduction
	Proposed Approach
	Problem Definition
	Chaos Quantification via Kalman Filter

	PSO Search Strategy
	Global Domain Partitioning
	Local Search Within Subdomains
	Characteristic Vector and Update Rule

	Integration of Kalman and PSO
	Stopping Criteria and Convergence
	Computational Considerations
	Potential Applications

	Experimental Setup
	Comparative Results Overview
	Convergence Analysis
	Classical PSO vs. Domain-as-Particle PSO

	Computation Time and Future Directions

