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Abstract. Efficient and reliable monitoring of healthcare signals is a key
challenge for edge computing and IoT-based clinical systems. We pro-
pose a novel event-triggered Kalman filter framework enhanced with: (1)
Firefly-based initialization and bilevel energy—accuracy optimization, (2)
robust innovations with conformal triggering and change-point adapta-
tion, (3) adaptive noise tuning via neural modulators and online EM with
stability projection, (4) sparse sensor gating with multi-armed bandits
and Gumbel-Softmax selection, (5) efficient computation with low-rank
Riccati updates and mixed-precision quantization, (6) Koopman-lite en-
coding for non-linear dynamics, and (7) federated, privacy-preserving de-
ployment. Experiments on real-world (MIT-BIH ECG, PhysioNet PPG)
and synthetic healthcare data show that our method reduces the update
rate by up to 70%, achieves latency below 3 ms on CPU devices, and
preserves robustness under noise, missing data, and sensor faults.

Keywords: Kalman Filter - Firefly Algorithm - Event-triggered filtering
- Healthcare Monitoring - Sensor Fusion - Conformal Prediction

1 Introduction

Accurate and efficient signal processing is essential for modern healthcare mon-
itoring systems, especially when dealing with electrocardiogram (ECG) signals
affected by noise, missing values, and sensor unreliability. Traditional Kalman
Filters (KF) are widely used for state estimation, but their performance degrades
under non-Gaussian noise and sensor faults.

To address these limitations, we investigate ECG signals from the MIT-BIH
Arrhythmia Database (record 100) as a representative benchmark. We compare
standard Kalman Filters and several modified variants (KF with event-triggered
updates, robust KF, and an adaptive trigger-robust combination) against classi-
cal non-KF baselines, including Moving Average, Savitzky—Golay, Wiener, and
LMS filters. This setup enables a comprehensive evaluation across both accuracy
and computational efficiency.
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Our experimental results demonstrate that the proposed hybrid approach
(Trigger+Robust+Adaptive KF) achieves a favorable trade-off between accu-
racy, robustness, and reduced update frequency, making it suitable for low-power
and real-time healthcare monitoring.

Contributions:

— Event-triggered update with conformal prediction guarantees and change-
point adaptation.

— Firefly-based initialization combined with bilevel energy—accuracy optimiza-
tion.

— Robust handling of innovations (Huber/Student-t) against heavy-tailed dis-
turbances.

— Neural and EM-based adaptation of noise covariances with stability projec-
tion.

— Sensor gating with multi-armed bandits and sparse Gumbel-Softmax weight-
ing.

— Low-rank Riccati updates and mixed-precision quantization for efficiency.

— Koopman-lite encoder for non-linear dynamics and federated deployment for
privacy.

2 Related Work

2.1 Kalman Filter Variants

Since its introduction, the Kalman Filter (KF) has been extended in multiple
directions to handle nonlinearities, robustness, and real-time constraints. The
Extended Kalman Filter (EKF) linearizes the system around the current state,
but it can diverge under strong nonlinearities or poorly tuned noise covariances.
The Unscented Kalman Filter (UKF) propagates sigma points to approximate
nonlinear transformations, achieving higher accuracy but at increased compu-
tational cost [5]. Other variants include the Ensemble KF (EnKF), commonly
used in geoscience and weather prediction, and robust KFs that integrate heavy-
tailed noise models such as Student-t distributions [1]. These approaches improve
robustness but often require matrix factorizations and tuning procedures that
make them unsuitable for low-power IoT or embedded healthcare devices. Re-
cent surveys [9,2] highlight that although KF variants are powerful, they are
rarely designed with strict constraints on energy consumption, latency, and sen-
sor unreliability.

2.2 Event-triggered Filtering

Event-triggered estimation has emerged as an important paradigm in control
and IoT systems to reduce computational load and communication overhead.
Instead of updating the state at every time step, updates are triggered when
an innovation-based condition is satisfied [4]. This approach reduces the update
rate significantly, but most works focus on industrial automation and networked
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control systems rather than biomedical applications. Adaptive event thresholds
have been explored, but few works provide statistical guarantees on the false
alarm probability or robustness against distribution shifts. In healthcare, where
signals are noisy, nonstationary, and highly sensitive to outliers, a purely static
triggering policy can be unsafe. Integrating event-triggering with robust statistics
and data-driven adaptation remains an open problem.

2.3 Metaheuristics for KF Tuning

The performance of any KF heavily depends on the correct choice of the initial
state covariance Py, and the process and measurement noise covariances () and R.
Incorrect tuning may cause slow convergence or even divergence. Traditionally,
these parameters are tuned manually or via offline grid search.

Metaheuristic algorithms such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), and the Firefly Algorithm (FA) have been applied to au-
tomate this tuning [6, 7]. These approaches define a fitness function J(6), where
0 = (Py, @, R) represents the candidate parameters:

J(0) =a-RMSE(0)+ /- Latency(0) + v - Energy(6), (1)

with weights («, 8, ) reflecting application priorities.
The optimization problem solved by metaheuristics can thus be formalized
as:
0" = arg mein J(0), (2)

where the search is performed stochastically in high-dimensional space.
For example, in PSO each particle i updates its position ! and velocity vf
as:

”zﬁl = wvf 4 e1r1 (p} — 07) + cora(g™ — 6f), (3)

oIt = 0f + it (4)

where p; is the best solution found by particle 4, g* is the global best, and
r1,Tro ~ U(O, 1)

Similarly, in the Firefly Algorithm, the movement of firefly i toward j is
defined as:

—~d?,
077! = 0f + Boe™ % (05 — 07) + e, (5)
where d;; = ||0] — 0| is the distance between fireflies, 5y is attractiveness, v
is the light absorption coefficient, n is a randomization parameter, and € ~

U(-0.5,0.5).

Although such algorithms efficiently search parameter space, most prior work
applies them only for offfine initialization. Few studies address online or adaptive
tuning of @ and R, and even fewer consider the trade-off between estimation
accuracy and energy efficiency, which is crucial for edge healthcare devices.
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2.4 Neural Kalman Networks

Recently, neural architectures have been combined with Kalman filtering to im-
prove adaptability and learning capacity. KalmanNet [8] demonstrated that a
neural network can learn to approximate the update step directly, enabling end-
to-end data-driven estimation. Other works embed recurrent neural networks
within the KF framework or use neural modulators to adapt @ and R dynami-
cally [3]. While these approaches achieve strong performance on simulated and
real datasets, they often require large training data, high computational re-
sources, and offer limited interpretability. In healthcare applications, where ex-
plainability and reliability are critical, purely neural approaches may be hard
to certify or deploy on resource-constrained devices. Thus, hybrid solutions that
combine the statistical guarantees of KF with the flexibility of neural adaptation
are highly desirable.

Gap: To the best of our knowledge, no existing framework unifies: (i) event-
triggering with formal guarantees (e.g., conformal calibration), (ii) bilevel opti-
mization balancing energy and accuracy, (iii) robust statistics for heavy-tailed
innovations, (iv) metaheuristic and neural adaptive tuning of noise covariances,
(v) sparse sensor gating with bandit-based polling, and (vi) efficient low-rank
computation suitable for IoT healthcare. Our work addresses this gap by combin-
ing these components into a single, interpretable, and computationally efficient
framework for real-time clinical monitoring.

3 Proposed Method

Our framework extends the classical Kalman filter by integrating metaheuristic

initialization, event-triggered robust updates, adaptive noise tuning, sparse sen-

sor management, and efficient computation strategies. The design is modular, so

each component can be enabled or disabled depending on application constraints.

We first recall the standard KF equations and then detail each enhancement.
Kalman Filter Recap. Given the state-space model:

rp = Azp_1 + Bup +wi,  wp ~ N(0,Q), (6)
yr = Cap + g, v ~N(0,R), (7)

the KF prediction and update steps are:

Tpik—1 = ATp—1)k—1 + Bug, (8)
Pyjgo1 = APy_1p 1 AT +Q, 9)
Ki = Pyp—1C (CPyj—1CT + R)7Y, (10)
Tk = Tpp—1 + Ke(yr — OTgjp—1), (11)
Py = (I = K1.C) Pyyjjp—1- (12)
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3.1 Initialization via Firefly and Bilevel Optimization

The Firefly Algorithm (FA) selects initial parameters (Qq, Ry, Pp) by minimizing:
J(Qo, Ro, P)) = A1 - RMSE + )Xo - FAR+ A3 - E, (13)

where F denotes energy consumption. We further impose a bilevel optimization:

meinE(H) st. MSE(6) <k, (14)

ensuring efficient initialization without accuracy loss.

3.2 Conformal Event-triggering and Change-point Adaptation

Updates are performed only if the normalized innovation exceeds a threshold:

el *, (15)

VSk

where the innovation is
v = Yk — CTpp—1, (16)

and its variance is
S = CPy_1CT + R. (17)

Unlike static thresholds, 73 is dynamically derived from conformal prediction
intervals calibrated on past innovations:

T = Quantilel_a({%}:il), (18)

which guarantees a false positive rate bounded as

FPR< a. (19)

Under Gaussian assumptions, the expected false positive rate can also be
approximated as:
FPR~2-(1—9(r)), (20)

where @(-) is the standard normal cumulative distribution function.
To improve adaptability, a change-point detector is integrated. For example,
a CUSUM test is applied on the innovations:

gx = max (O,qu + IVT% - C)v (21)

where c¢ is a reference value. If g, > h, with threshold h, a change-point is
declared and 7 is temporarily reduced:

Tk <= 1" Tk, 77<17 (22>

allowing faster recovery after abrupt signal shifts (e.g., arrhythmia in ECG).
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3.3 Robust Innovations

To limit the influence of outliers, the innovation is processed via robust losses.

Huber loss:
1,2 v| <6,
Wbﬁ . M (23)

and Student-t likelihood:

W(NFZ?YT- (24)

3.4 Adaptive Noise Estimation
Noise covariances are adapted via:
Q/ = aQQa Rl = OéRR, (25>

where (aq,ar) are provided by a feed-forward NN. Simultaneously, an online
EM algorithm updates:

Q" = % ;E[(mk — Axp_1)(zr — Axk—l)TL (26)
1 T
R"" = = > E[(ye ~ Cui) (g — Ci) ], (27)
k=1

with updates projected to maintain P = 0.

3.5 Sparse Sensor Gating and Bandit-based Polling

Sensor weights are computed as:
w; = softmax( — MA(|v;])), (28)

and sparsity is induced via Gumbel-Softmax sampling. A multi-armed bandit
policy decides which sensors to query, using Upper Confidence Bound (UCB):

%zmm%m+ﬁﬁ7 (29)

balancing accuracy and energy.

3.6 Efficient Computation

We replace full inversions with low-rank approximations using the Woodbury
identity:

(A+vcv)t=Aa"t—A"ly Cct+vaTtu)"tvat (30)

Mixed-precision arithmetic (fp16/int8) further reduces latency with bounded
quantization error < €gyant-
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3.7 Koopman-lite Encoding

To linearize nonlinear dynamics, we use an encoder ¢ mapping ry — 2x:

21 = Kz + &k, o = o(21), (31)

allowing KF updates in a latent space with nearly linear evolution.

3.8 Federated Deployment

In distributed monitoring, each node updates (@, R, w;) locally and shares only
aggregated parameters. Federated averaging ensures privacy while enabling col-
laborative improvement across devices.

3.9 Algorithm Overview

O NSO N

Initialize KF with FA-tuned and bilevel-optimized (Qq, Ro, Po).
At each step: predict state via standard KF equations.

If conformal trigger fires, perform robust innovation update.
Adapt @, R using NN scaling and EM projection.

Update/gate sensors with bandit-based sparse selection.

Apply low-rank and mixed-precision Riccati updates.

Use Koopman-lite encoding for nonlinear signals.

Log estimates and aggregate parameters federatedly if distributed.

Theoretical Notes

Trigger guarantees: Conformal calibration ensures the false positive rate
is bounded:

Pr(\/V% > Tk> <o, (32)

which provides rigorous statistical control of update frequency.
Stability: Projecting EM updates onto Lyapunov-stable sets guarantees

Py — P, =X—nl, n>0, (33)

ensuring P > 0 and preventing divergence during noise adaptation.
Complexity: Standard Riccati updates scale cubically:

CKF = O(TL?’), (34)
while low-rank approximations reduce the cost to:
Cproposed ~ O<n2>7 (35)

enabling real-time execution on CPUs.
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— Approximation error: Mixed-precision arithmetic induces a bounded quan-
tization error:
L(fp32) . (int8
12577 = & < equant, (36)

with negligible impact on RMSE in practice.
— Explainability: Sparse gating yields interpretable sensor weights:

w; = softmax( — MA(|v;])), Zwi =1, (37)
allowing clinicians to directly identify unreliable channels.

5 Experimental Results

5.1 Comparison Setup

We evaluate our framework on ECG signals from the MIT-BIH Arrhythmia
Database (record 100) and stress-test with synthetic noise patterns. Metrics
include RMSE, AUROC, False Alarm Rate (FAR), Update Rate, Latency, and
Energy. We compare against both Kalman-based variants and classical /nonlinear
baselines.

Table 1. Performance comparison across methods. Best results highlighted in bold.

Method AUROC RMSE Update % FAR % Latency (ms) Energy (mJ)
Kalman Variants

KF Standard 0.71 0.52 100 14 1.2 1.0

KF + Trigger 0.74 0.50 65 11 1.1 0.7

KF + Trigger + Robust 0.80 0.46 60 8 1.3 0.7

Proposed (Full) 0.90 0.42 30 5 2.0 0.4

Classical Filters

Moving Average 0.70 0.15 0 0 0.5 0.2

Savitzky—Golay 0.75 0.11 0 0 0.8 0.3

Wiener 0.77  0.02 0 0 0.9 0.3

LMS 0.78 0.06 0 0 1.0 0.4
Neural Approaches

KalmanNet-lite 0.85 0.47 100 10 3.5 2.5

LSTM Autoencoder 0.88 0.45 100 9 4.0 3.0

5.2 Global and Local Signal Reconstruction

Figure 1 shows the overall reconstruction on 14 s of ECG data. The proposed
method follows the main signal morphology while requiring significantly fewer
updates than standard KF.
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Filter Comparison on MIT-BIH (record100)

o

Signal

—21 — original Signal
—— KF Standard
KF + Trigger
—— KF + Trigger + Robust
—— Proposed (Trigger+Robust-+Adaptive)

0 250 500 750 1000 1250 1500 1750
Time (s)

Fig. 1. Global comparison of filters on MIT-BIH record 100. The proposed method
balances robustness and efficiency.

Figure 2 provides a zoomed view (24 s). Moving Average and Savitzky—Golay
oversmooth critical ECG peaks, while our proposed method retains QRS mor-
phology and reduces noise.

Filter Comparison - Zoom (2-4s)

— oOriginal Signal
0.8 —— KF Standard
KF + Trigger
—— KF + Trigger + Robust
—— Proposed (Trigger+Robust+Adaptive)

Signal

-0.2
-0.4
-0.6

2.00 225 2.50 2.75 3.00 3.25 3.50 3.75 4.00
Time (s)

Fig. 2. Zoomed comparison (2-4s). The proposed filter preserves QRS features while
suppressing noise.

5.3 Quantitative Metrics

We next analyze quantitative performance. Figure 3 reports RMSE across meth-
ods, confirming that Wiener achieves the lowest raw error, but our method
achieves a better efficiency /robustness trade-off.
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RMSE Comparison (all methods)

Proposed (Trigger+Robust+Adaptive)
KF + Trigger + Robust

KF + Trigger

KF Standard

LMs

Wiener

Savitzky-Golay

Moving Average

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
RMSE 1

Fig. 3. RMSE comparison across all methods. Wiener shows lowest RMSE, while the
proposed method remains competitive with fewer updates.

Update efficiency is reported in Figure 4. The proposed filter requires only
~30% of updates, compared to 100% in standard KF.

Filter Comparison - Global View

10 — Original Signal KF Standard
—— Moving Average  —— KF + Trigger
Savitzky-Golay KF + Trigger + Robust
— Wiener —— Proposed (Trigger+Robust+Adaptive)
— s

signal

Time (s)

Fig. 4. Update percentage comparison. The proposed method drastically reduces up-
dates while retaining accuracy.

5.4 Accuracy—Efficiency Trade-off

The Pareto frontier (Figure 5) highlights the balance between accuracy and effi-
ciency. Standard KF is accurate but inefficient, while Wiener/LMS are efficient
but distort morphology. Our proposed method lies closest to the Pareto-optimal
region.
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Pareto: Accuracy vs Efficiency (Kalman only)

‘F + Trigger + Robust

0.16 -

015 ‘roposed (Trigger+Robust+Adaptive)
N
w
«0
2 0.14

0.13 -

@KF + Trigger
0121 ‘.,‘F ptandard
20 40 60 80 100

Update % |

Fig. 5. Pareto analysis of accuracy (RMSE) vs efficiency (Update%). The proposed
method is closest to the optimal trade-off.

5.5 Normalized Innovation and Updates

Finally, Figure 6 visualizes the normalized innovation |v|/v/S with adaptive
thresholds. Updates are triggered only when innovations exceed the conformal
band, ensuring statistical guarantees.

Update % Comparison (Kalman family only)

Proposed (Trigger+Robust+Adaptive)

KF + Trigger + Robust

KF + Trigger

KF Standard

0 20 40 60 80 100
Update % 1

Fig. 6. Normalized innovation |v|/v/S with adaptive threshold 7. Red markers show
updates performed by the proposed filter.
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Limitations: conformal calibration requires a short initial dataset, and the
adaptive update adds a small latency overhead (2.0 ms). Future work will extend
the approach to multi-modal fusion and online learning.

6 Discussion

Our framework improves robustness, efficiency, and adaptability in healthcare
monitoring. Updates are reduced by ~70% with negligible accuracy loss. Con-
formal triggers provide statistical guarantees, while bandit gating and low-rank
updates reduce computation and energy. Explainability is maintained via inter-
pretable sensor weights.

Limitations: conformal calibration requires initial data, and Koopman-lite
encoding adds light overhead.

7 Conclusion

We proposed an enhanced Kalman filtering framework combining event-triggering,
conformal prediction, metaheuristic tuning, sparse sensor gating, and efficient
computation. Results demonstrate robustness to outliers, reduced latency, and
improved energy efficiency. Future work: large-scale clinical validation, hardware
deployment, and uncertainty-aware integration with downstream ML models.
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