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Abstract. Ensuring vehicle safety requires analyzing both active and
passive systems under a wide range of crash conditions. Traditional
crash testing is expensive, while exhaustive simulations are computa-
tionally demanding. Crash parameters such as impact velocity, collision
angle, vehicle mass ratio, and structural stiffness are modeled as opti-
mization variables, following previous studies on vehicle crashworthiness
optimization with multi-objective PSO [5].The method directs the search
toward scenarios maximizing injury criteria such as Head Injury Crite-
rion (HIC) and chest deformation [9]. Furthermore, a Domain-as-Particle
PSO (DaP-PSO) is introduced, where groups of particles explore subdo-
mains hierarchically, improving convergence and robustness compared to
standard PSO [4]. Simulation results show that DaP-PSO detects criti-
cal crash conditions with fewer evaluations than classical PSO, offering
a promising tool for cost-effective virtual safety testing [1].

Crash simulation, vehicle safety, passive safety, active safety, worst-case sce-
narios, PSO, Domain-as-Particle.

1 Introduction

Vehicle safety evaluation involves both active safety systems, which prevent col-
lisions, and passive safety systems, which mitigate injury severity during a crash.
Assessing passive safety performance requires simulating a wide range of colli-
sion scenarios, varying parameters such as impact speed, angle, and structural
stiffness. Exhaustive exploration of all combinations is infeasible, motivating the
need for optimization-driven approaches.

Metaheuristic methods such as Particle Swarm Optimization (PSO) [3] pro-
vide efficient alternatives to brute-force search. By guiding a swarm of candidate
solutions toward high-risk crash conditions, PSO can significantly reduce the
number of simulations while still capturing critical scenarios. However, standard
PSO may stagnate in local optima or fail to adequately cover large parameter
spaces.
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This paper introduces a PSO-based approach for worst-case crash detection,
extended with a Domain-as-Particle (DaP) variant to enhance search diversity
and convergence reliability.

2 Background and Related Work

Crashworthiness evaluation typically relies on physical crash tests or numerical
simulation models such as finite element methods (FEM). Although accurate,
these approaches are computationally demanding when applied to large design
spaces. Prior works have applied optimization and machine learning to reduce
testing effort, but few have explicitly focused on identifying worst-case crash
conditions.

PSO has been applied in automotive design optimization, yet classical PSO
often suffers from premature convergence. Hierarchical strategies, such as multi-
swarm or domain-based PSO, have been shown to improve search efficiency in
other engineering problems. Building on these insights, we propose DaP-PSO
for crash safety applications.

3 Problem Formulation

A crash scenario is represented as a vector of parameters that describe the main
conditions of the impact. The crash parameter space W is defined by the follow-
ing variables:

– v: the impact velocity [km/h],
– θ: the impact angle [°], distinguishing frontal (θ ≈ 0◦), oblique, and lateral

(θ ≈ 90◦) collisions,
– mr: the vehicle mass ratio, accounting for asymmetric collisions,
– k: the structural stiffness coefficient, related to deformation properties of the

vehicle.

Each candidate scenario is therefore represented by:

x = (v, θ,mr, k) ∈ W.

The objective is to identify the vectors x that lead to the most severe crash
outcomes. To quantify crash severity, we define the objective function:

J(x) = w1 ·HIC(x) + w2 · CD(x),

where HIC(x) is the Head Injury Criterion and CD(x) is the chest deformation.
The weights w1, w2 > 0 balance the contribution of each metric depending on
the safety standards adopted.

Figure 1 provides an illustrative example of this problem formulation. The
plot shows a Monte Carlo sampling of the parameter space with respect to two
main variables, velocity v and impact angle θ, while the other two variables (mr
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and k) are varied randomly. The color scale indicates the severity J(x), and the
highlighted point marks the worst-case scenario identified among the sampled
crashes. This visualization clarifies the optimization goal: systematically explore
the crash parameter space to detect the combinations that maximize injury
severity.

Fig. 1. Illustrative crash severity landscape: sampled crash scenarios in the (v, θ) space
with severity J(x) represented by the color map. The highlighted point corresponds to
the worst-case scenario found.

4 Classical PSO for Crash Scenarios

In standard PSO, each particle represents a candidate crash scenario. Particle
velocities are updated using cognitive and social components, driving particles
toward personal and global best solutions. While effective in moderate search
spaces, classical PSO may require many iterations to identify extreme worst-
case scenarios.

5 Domain-as-Particle PSO

The proposed Domain-as-Particle PSO (DaP-PSO) introduces a hierarchical ex-
ploration strategy designed to overcome the main limitations of classical PSO,
namely premature convergence and insufficient coverage of the parameter space.
Instead of treating each particle as an isolated candidate solution, the global
parameter space W is partitioned into multiple subdomains, each of which is
treated as a higher-level particle.

Within each subdomain, a set of candidate crash scenarios is generated and
evaluated. The subdomain is represented by its center, which evolves over time.
The motion of each subdomain is determined by a characteristic vector, com-
puted from the best-performing candidates inside it. This ensures that the move-
ment reflects the local structure of the search space and avoids the erratic up-
dates typical of standard particles.
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Moreover, each subdomain does not evolve in isolation: it is influenced by (i)
its own best-performing solutions, (ii) discoveries made in neighboring subdo-
mains, and (iii) the global best scenario found so far. This combination enables
a coordinated search process where promising information propagates across re-
gions. As a result, DaP-PSO maintains diversity in the exploration phase while
ensuring reliable convergence.

The advantages of this formulation can be summarized as follows:

– Improved exploration: dividing W into subdomains allows different re-
gions to be explored in parallel, reducing the risk of premature convergence
to a local optimum.

– Adaptive convergence: characteristic vectors provide smoother and more
stable updates compared to classical velocity rules, ensuring that the evolu-
tion of subdomain centers reflects consistent trends rather than noise.

– Coordinated information sharing: neighbor interactions allow knowl-
edge transfer between subdomains, spreading promising directions across
the parameter space.

– Scalability: the decomposition into subdomains distributes the computa-
tional effort, making the method more suitable for large and complex crash
parameter spaces.

Figure 2 illustrates this mechanism. Each ellipse represents a subdomain
of W, shifting from its initial (solid) to its updated (dotted) position under
the combined effect of its characteristic vector and feedback from neighboring
regions.

5.1 Parameter Space and Subdomain Initialization

The crash parameter space W represents the global domain of all possible crash
scenarios. In the proposed DaP-PSO framework, W is partitioned into mul-
tiple subdomains Dj , which are distributed uniformly across the space. Each
subdomain is associated with a center point (initially placed in a grid-like con-
figuration) and acts as a higher-level particle in the swarm.

This uniform initialization ensures that the search starts with a balanced
coverage of the parameter space, avoiding early bias toward specific regions. Fig-
ure 3 illustrates this initialization strategy, where circles represent subdomains
distributed across the global parameter space W.

6 Particle Generation and Surrogate Modeling

After defining the subdomains (see Fig. 3), the next step is to generate candidate
weight vectors inside each region. The goal is to sample the parameter space in
a way that guarantees both a sufficiently accurate coverage of each subdomain
and an efficient management of computational resources [6, 8, 7].

Two distinct types of particles are generated:
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Parameter Space W

Initial subdomain Updated subdomain

Initial center Updated center

Fig. 2. Illustration of subdomain movement in parameter space.

– Full particles (black): these are densely and uniformly distributed within
the subdomain Dj . Each black particle represents a candidate weight vector
that is directly evaluated using the true cost function. Because the cost func-
tion evaluation is expensive, the number of full particles must be carefully
balanced: too few would lead to insufficient coverage of the search space,
while too many would dramatically increase computational time. Their role
is to ensure a fine-grained exploration, so that no promising regions are over-
looked.

– Surrogate particles (red): these are also uniformly distributed inside Dj ,
but with a significantly lower density than the full particles. Their main
purpose is not to be directly evaluated, but rather to provide training data
for a surrogate model (such as Random Forest or Gradient Boosting). The
surrogate acts as an approximation of the real cost function, enabling us to
quickly estimate the quality of candidate solutions. Only a limited subset
of surrogate-predicted candidates, typically those with the best predicted
performance, are then promoted to full evaluation. This hierarchical strat-
egy allows us to discard unpromising regions early, saving computational
resources.

In summary, the dense grid of black particles guarantees reliability in exploring
the subdomain, while the sparser red particles support the construction of a
surrogate that provides efficiency by filtering candidates. The synergy between
the two particle types creates a balance between exploration and computational
cost, making the search process both scalable and robust [2].
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Parameter space W

Subdomain Dj

with center

Fig. 3. Uniform distribution of oval-shaped subdomains Dj inside the parameter space
W. Each ellipse represents a subdomain with its center.

6.1 Surrogate Model Construction and Usage

In order to reduce the number of expensive evaluations of the true cost function, a
surrogate model is introduced. The surrogate exploits the information provided
by the surrogate particles (red), which are uniformly distributed within each
subdomain Dj but evaluated less frequently. Instead of being directly validated,
these particles provide approximate labels (composite values) that are used to
train an ensemble learning model.

Figure 4 illustrates this process: surrogate particles are first associated with
composite values derived from preliminary evaluations. These data points are
then used to train an ensemble of machine learning regressors, in our case Ran-
dom Forest and Gradient Boosting. The ensemble prediction is obtained by aver-
aging the outputs of both models, resulting in a stable and robust approximation
of the cost function. This surrogate model can then be queried to estimate the
value of normal (black) particles without performing the costly original evalua-
tion.

Once the surrogate is trained, all particles in Dj can be rapidly scored. The
workflow, illustrated in Fig. 5, proceeds as follows:

1. Each candidate particle is assigned a predicted composite value by the sur-
rogate.

2. Only the top-K candidates (those with the best predicted performance) are
selected.

3. These top-K candidates are then validated with the true cost function (e.g.,
a neural network evaluation), obtaining their real composite values.
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Dj

Full particles

Surrogate particles

Fig. 4. Dense uniform distribution of full (black) and sparse surrogate (red) particles
inside a subdomain Dj , excluding the boundary.
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Fig. 5. Schematic of surrogate model creation with circular nodes: surrogate particles
provide composite values to train an ensemble (RandomForest and GradientBoosting),
which is then used to estimate composite values for normal candidate particles.

This strategy ensures that only a small fraction of particles undergo the
expensive full evaluation, while the surrogate filters out unpromising candidates.
In this way, we achieve a favorable trade-off between exploration of the search
space and computational efficiency.

7 Methodology

The proposed framework enhances classical PSO by combining a domain-as-
particle representation with surrogate-assisted evaluation. The workflow is struc-
tured into three main components: domain update, surrogate management, and
the iterative optimization loop.
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Particle Surrogate
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Fig. 6. Workflow of candidate selection: All candidate particles with surrogate pre-
dictions (left); selection of top K candidates (center); true composite values after full
validation with the neural network (right).

7.1 Domain Update

Each subdomain Dj is represented by a characteristic vector cj that determines
its current position in the search space. The update of cj follows a Particle Swarm
Optimization (PSO)-like dynamic, where four contributions jointly define the
new direction and magnitude of movement:

– Inertia (ωv(t−1)): retains part of the previous velocity, ensuring continuity
in motion. This prevents abrupt oscillations and preserves momentum from
past explorations.

– Personal best influence (∆p): pulls the domain center toward its histori-
cally best position pj , acting as a local exploitation mechanism.

– Neighbor influence (∆n): drives exploration in coordination with adjacent
subdomains, enabling information sharing across the search space.

– Global best influence (∆g): attracts all domains toward the globally best
solution g, ensuring convergence at the global level.

The update rules are expressed as:

v(t) = ωv(t−1) +∆p +∆n +∆g,

c
(t)
j = c

(t−1)
j + v(t).

Here, ω is the inertia weight, while ∆p, ∆n, and ∆g are stochastic contributions

defined as: ∆p = ϕprp
(
pj − c

(t−1)
j

)
,

∆n = ϕnrn
(
nj − c

(t−1)
j

)
,

∆g = ϕgrg
(
g − c

(t−1)
j

)
, with rp, rn, rg ∼ U(0, 1) random coefficients.

7.2 Surrogate Management

Since full evaluations are computationally expensive, a two-stage evaluation
strategy is introduced:
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– Surrogate prediction: all candidate particles are first assessed using lightweight
surrogate models.

– Top-K selection: only the most promising candidates are promoted to full
evaluation.

– Surrogate refresh and retraining: outdated surrogate particles are dis-
carded and replaced, while the surrogate model is updated with new vali-
dated results.

This ensures that computational resources are concentrated on candidates
with higher potential, while preserving exploration of the search space.

7.3 Iterative Workflow

The optimization proceeds through a nested iteration process, summarized in
Figures 6 and ??. For each domain and iteration:

1. Extraction of surrogate particles from the region of interest.
2. Training of the surrogate model and prediction of candidate scores.
3. Selection of top-K candidates based on surrogate estimates.
4. Full validation of the selected candidates with the reference cost function.
5. Update of the characteristic vector according to validated results.
6. Movement of the domain center, enabling progressive exploration of the pa-

rameter space.

The process repeats across all domains until one of the stopping criteria is
satisfied (target score, iteration budget, or computational resource limit).

7.4 Risk Value Definition

In order to identify worst-case scenarios, each particle explores the crash pa-
rameter space (v, θ, o, . . .) and is associated with a scalar metric, called the Risk
Value:

R(v, θ, o, . . .) = α · amax + β ·∆v + γ · Pinjury, (1)

where:

– amax denotes the peak deceleration experienced during the crash,
– ∆v is the relative change in velocity between colliding bodies,
– Pinjury is the probability of injury derived from safety models,
– α, β, γ are weighting coefficients that balance the contribution of each term.

This composite metric provides a unified measure of crash severity. The op-
timization process is therefore formulated as a maximization problem: particles
iteratively update their positions in the parameter space, moving towards re-
gions that yield higher values of R in Eq. eq:risk-value. In this way, the swarm
converges towards critical and potentially unsafe crash configurations, which are
of particular interest for safety validation.
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8 Experimental Results

The goal of the experimental campaign is to evaluate the ability of two op-
timization strategies — the standard Particle Swarm Optimization (PSO) and
the proposed Domain-as-Particle PSO (PSO-DAP) — to maximize the risk value
defined in Eq. (X). Both methods are applied to the same parameter space, con-
sisting of velocity v, angle θ, and overlap ratio o. The criticality of each crash
scenario is quantified by the objective function, and the optimizer aims at finding
configurations that yield the highest risk values.

8.1 Standard PSO Setup

The first experiment employs a classical PSO implementation, where each parti-
cle directly explores the search space. The main settings are reported in Table 1.

Table 1. Parameter configuration for standard PSO.

Parameter Value

Number of particles 3000
Iterations 100
Velocity weight w 0.7
Cognitive coefficient c1 1.5
Social coefficient c2 1.5
Bounds on v [10, 100] km/h
Bounds on θ [0, π/2] rad
Bounds on o [0.1, 1.0]

The convergence behaviour is monitored by recording the best global risk
value across iterations, and a final scatter plot illustrates the distribution of
particles with respect to velocity and angle.

8.2 Domain-as-Particle PSO Setup

The second experiment adopts the Domain-as-Particle approach (PSO-DAP).
Here, the search space is initially partitioned into multiple domains, which act
as high-level particles. Each domain generates internal candidate points, and
its performance is evaluated according to the maximum risk value discovered
within it. Domains are progressively refined: the best domain is shrunk to focus
the search, while the others are shifted towards it.

The setup is summarized in Table 2.
The evolution of risk values across domains is tracked at each iteration, and

the highest-scoring domain drives the search. This hierarchical mechanism allows
PSO-DAP to more effectively explore the space and converge towards highly
critical crash configurations.



Title Suppressed Due to Excessive Length 11

Table 2. Parameter configuration for Domain-as-Particle PSO.

Parameter Value

Number of domains 5
Particles per domain 100
Iterations 5
Bounds on v [0, 100] km/h
Bounds on θ [0, π/2] rad
Bounds on o [0, 1.0]
Domain refinement Shrink best, shift others

8.3 Crash Scenario

The crash is modeled as a controlled frontal-to-oblique impact, where the relative
velocity and stiffness of the vehicles are varied. The configuration is represented
through a characteristic vector :

x = [v, θ, mr, k]

where:

– v: relative impact velocity [km/h],
– θ: impact angle [degrees],
– mr: mass ratio between vehicles,
– k: equivalent stiffness parameter.

8.4 Objective Function

The severity of each configuration is quantified through a composite risk metric:

J(x) = α ·HIC + β · ChestDefl.

where HIC (Head Injury Criterion) and chest deflection are weighted with co-
efficients α, β calibrated from experimental crash test data. This metric ensures
that the optimization targets realistic safety-relevant outcomes.

E. Algorithms Compared

Two optimization strategies were implemented and compared: the Classical PSO
and the Domain-as-Particle PSO (DAP-PSO).

Classical PSO: The algorithm was initialized with 3,000 particles and
iterated for 100 generations. The inertia weight was set to w = 0.7, and the
cognitive and social coefficients were c1 = c2 = 1.5. Each particle explored the
three-dimensional parameter space defined by:

v ∈ [10, 100] km/h, θ ∈ [0, π/2] rad, o ∈ [0.1, 1].
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The optimization targeted the maximization of the risk function, with the global
best updated at each iteration.

Domain-as-Particle PSO (DAP-PSO): In this hierarchical approach,
the search space was initially divided into 5 domains. Each domain contained
100 particles, sampled uniformly within its local bounds. The process was iter-
ated for 5 global iterations, during which domains were dynamically updated:
the best-performing domain was shrunk around its center, while the remaining
domains were shifted toward it. The same risk function was used as objective,
ensuring comparability with the Classical PSO.

Both algorithms were evaluated in terms of maximum achieved risk value,
convergence behavior, and computational time. While Classical PSO relied on a
large swarm and extended iterations, DAP-PSO exploited domain-level explo-
ration to reduce stagnation and accelerate convergence.

Fig. 7. Convergence of Classical PSO
with 3000 particles and 100 iterations.

Fig. 8. Convergence of Domain-as-
Particle PSO with 5 domains and 100
particles per domain.

9 Discussion and Conclusion

The results highlight the advantages of hierarchical domain exploration. By
embedding subdomain dynamics, the proposed Domain-as-Particle PSO (DaP-
PSO) balances exploration and exploitation more effectively than classical PSO.
This hierarchical search enables faster identification of critical crash cases, while
also reducing computational burden and improving safety insights.

Overall, the study confirms the superiority of DaP-PSO over the classical
formulation for identifying worst-case crash scenarios. The algorithm proved
capable of focusing the search on promising regions of the parameter space,
leading to more consistent convergence and enhanced interpretability of results.

Future Work: Several directions remain open for further development:

– Parallelization: running multiple domains in parallel to significantly reduce
computation time and make the approach scalable for large datasets.



Title Suppressed Due to Excessive Length 13

– Multi-objective optimization: extending the framework to jointly consider
competing safety objectives, such as minimizing injury risk while maximizing
system robustness.

– Real-world datasets: validating the approach with experimental crash data
to confirm its effectiveness beyond simulation.

– Integration with active safety systems: coupling DaP-PSO with online con-
trollers to support adaptive safety strategies in real-time driving scenarios.

– Hybrid surrogate models: combining machine learning surrogates (e.g., Ran-
dom Forest, Gaussian Processes) with DaP-PSO to reduce evaluation cost
while maintaining accuracy.

In conclusion, DaP-PSO represents a promising extension of PSO for complex
safety-related optimization tasks, with clear potential for real-world automotive
applications.
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