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Abstract. This chapter extends and improves upon a previously pub-
lished SIR-based pandemic model with feedback vaccination law, which
established a sufficient condition for achieving herd immunity through
the minimization of a cost function combining both vaccination effort and
intervention time. In the original approach, optimization was performed
using standard routines, which proved to be computationally demanding
and potentially limited in high-dimensional or nonlinear scenarios. Here,
we introduce an advanced Particle Swarm Optimization (PSO) strategy
based on a domain-as-particle paradigm, in which the parameter space
is partitioned into non-overlapping subdomains, each acting as an inde-
pendent PSO particle. This approach enables structured exploration of
the solution space and enhances both convergence speed and robustness.
The hybrid framework, integrating Simulink-based dynamic simulation
with the domain-as-particle PSO, is demonstrated to achieve herd im-
munity more rapidly and efficiently compared to the original method,
offering improved guidance for public health policy design.

Keywords: Pandemic control - SIR model - Particle Swarm Optimiza-
tion - Domain-as-Particle

1 Introduction

Mathematical modeling is a cornerstone of infectious disease management, with
compartmental models such as SIR (Susceptible-Infected-Removed) widely used
to understand epidemic evolution and to design intervention strategies [1]. In [?],
a control-oriented extension of the SIR model was developed, where a feedback
vaccination law was introduced to drive the susceptible population below a herd
immunity threshold. The central objective was to minimize a cost function that
accounted for both the total squared vaccination effort and the time required to
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reach herd immunity. Analytical results provided sufficient conditions for achiev-
ing epidemic control, and the approach was validated using dynamic simula-
tions [2]. Despite its effectiveness, the original optimization approach relied on
conventional routines, which may become inefficient or trapped in local minima
when faced with the nonlinearities and high-dimensional search spaces character-
istic of realistic epidemic control problems [3], as also highlighted in structural
optimization studies where PSO has been successfully applied [4], and in ad-
vanced control design tasks where PSO has proven effective for complex PID
tuning [5]. Motivated by these limitations, this work proposes a novel optimiza-
tion framework based on the domain-as-particle Particle Swarm Optimization
(PSO) paradigm, originally introduced by Kennedy and Eberhart [6].

In the proposed approach, the parameter space is divided into non-overlapping
domains, each treated as an autonomous particle in the PSO algorithm. Within
each domain, a local search is performed, guided by characteristic vectors derived
from the best candidate solutions. Domains communicate by sharing information
about their local optima, allowing the algorithm to balance exploration of new
regions and exploitation of promising areas. This structure enables faster and
more reliable convergence to optimal vaccination policies, building directly on
the foundation of the previous work, but overcoming its computational limita-
tions. By integrating the domain-as-particle PSO with Simulink-based epidemic
simulation, the framework efficiently finds optimal vaccination strategies that
minimize both intervention cost and time to herd immunity, thus providing valu-
able support for public health decision-making, consistent with other successful
applications of PSO in learning-based optimization tasks [7], highlighting its
versatility across diverse scientific domains such as geophysics [8] and renewable
energy systems [9)].

Background and Motivation The work presented n [10] proposed a feedback-
based vaccination strategy for pandemic mitigation, grounded in an SIR (Suscep-
tible-Infected—Removed) mathematical model. The core idea was to dynamically
regulate the vaccination rate in order to drive the susceptible population S(t)
below a desired immunity threshold Sy, thus achieving herd immunity efficiently.
This was accomplished by introducing a control law for the vaccination input,
which combined epidemic state variables and a feedback term, and by minimiz-
ing a cost function that penalized both the total vaccination effort and the time
required to reach the target.

In (1) the SIR model is formulated as a closed-loop dynamical system. Here,
the “Vaccinated per day” block computes the daily number of vaccinations as a
function of the current susceptible and infected populations, as well as the chosen
control parameters. The vaccination rate is fed into the SIR system, which in
turn updates the state variables S(t) (susceptible), I(t) (infected), and R(¥)
(recovered or removed). The model also accounts for the flow from susceptible
to infected and from infected to removed, according to the classical SIR equations
proposed in [11]:
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where r is the infection rate, a is the removal rate, and u,(t) is the vaccination
input calculated by the controller.

A possible control strategy is represented by the classical PID controller as
follows:

d(S(t;t_Sd)JrKI/O (8(r) = Sa)dr,  (2)

uy(t) = Kp(S(t) — Sq) + Kp
in which parameters Kp, Kp, and K; are to be determined.

Figure 1 provides a representative example of the time evolution of the vac-
cination control input u,(t) as defined in Equation 2. In this illustration, wu,(t)
initially decreases in response to the state variables and control parameters, then
rises again, exhibiting an asymmetric sinusoidal-like behavior that is typical for
optimal vaccination strategies under the considered control law. The trajectory
is influenced by the feedback mechanism embedded in Equation 2, with the final
intervention time 7" indicated by the red dashed line.

While the original framework provided analytical guarantees and valuable
insights, the optimization of control parameters relied on conventional routines,
which are often limited in terms of scalability and efficiency. In this work, we
build upon this foundation by integrating a domain-as-particle Particle Swarm
Optimization (PSO) approach. The block structure shown in Figure ?? is re-
tained as the core simulation engine, while the control parameters are systemat-
ically optimized using the advanced PSO methodology described in Section 77.

This combined approach enables a more efficient and robust search for op-
timal vaccination strategies by leveraging both the feedback capabilities of the
original model and the global optimization power of the domain-as-particle PSO.

Problem Formulation 1 Find parameters A\, T, Kp, Kp, and Ky, such that

T
N, T* K5, K}, K}) = ar min C\T :/ u?(t) dt + \T?
( 7 KD, K7) g(/\)T)KmeKI) ( ) . (t)
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where S(t) and I(t) are as in (1).0 (3)

with u,(t) = Kp(S(t) — Sq) + Kp

where u, (t) is the daily vaccination control input generated by the feedback
law, T is the time required to reduce the susceptible population below the desired
herd immunity threshold Sy, and ) is a penalization parameter that weights the
importance of the intervention duration. The domain-as-particle PSO algorithm
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Fig. 1. Example of a generic vaccination control input trajectory u,(¢) as a function of
time, ending at 7. The PSO-based optimization aims to minimize both the area under
the curve (vaccination effort) and the intervention time T'.

is employed to optimize the feedback control parameters in order to minimize
C(M\,T), thus ensuring an efficient and timely vaccination campaign.

By coupling dynamic simulation with advanced metaheuristic optimization,
this integrated framework enables a more robust and effective search for optimal
strategies, and represents the main contribution of this work.

1.1 Domain-as-Particle PSO for Cost-Optimal Vaccination Control

The proposed optimization framework extends the traditional PSO methodol-
ogy by introducing a domain-as-particle paradigm for searching cost-optimal
vaccination strategies within the SIR model. In this approach, the parameter
space—spanned by the intervention time 7" and the penalization parameter A—is
partitioned into distinct regions, which are explored systematically to identify
optimal solutions with respect to the cost function C'(\, T).

Unlike conventional PSO, which typically operates on individual particles
representing candidate solutions, our method treats each domain as an au-
tonomous entity that independently explores its own region of the parameter
space. This hierarchical structure enables both global exploration and local ex-
ploitation, allowing the optimization to efficiently traverse high-dimensional or
complex cost landscapes. Throughout the process, computational efficiency is
further improved by integrating surrogate modeling, which guides the selection
of promising candidates for high-fidelity simulation.

The overall objective is to minimize a cost function that accounts for both
the cumulative vaccination effort and the intervention duration, as defined in
Problem Formulation 1. The hierarchical progression of the algorithm—from
a restricted domain to the mother, grandmother, and higher-level domains—is
illustrated in Figure 2. Each expansion step increases the size of the domain by a
fixed growth factor, enabling the optimizer to systematically enlarge the search
space and progressively explore larger regions of the parameter space.
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The next section describes in detail the hierarchical and sequential explo-
ration mechanism, including the surrogate model update and the coordination
between domains at different levels.

Agrow
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Iteration 1

Iteration 2
Restricted Domain :
Mother Domain Grand

)

Iteration 3
mother Domain

Iteration n

Higher-Level Domain

Fig. 2. Hierarchical expansion of the search domains across PSO iterations. At each
step, the domain size increases by the fixed growth factor agrow, enabling a progressive

exploration of larger regions of the parameter space.

Hierarchical, Sequential Exploration and Surrogate Model Update

Iteration 1: Initialization and Restricted Domain Exploration.

— The algorithm starts with a restricted search domain (Figure 3), generating
a large set of candidate particles.

trained using a subset of fully simulated candidates.

compute the characteristic vector, guiding the search direction.

select K

Particle Pred.
w1 0.65
w2 0.71
w3 0.81
Wy 0.68
wWs 0.77
We 0.59
wr 0.83
ws 0.62

Select Top K

validate

Full Validation
Particle True

wr 0.78
w3 0.79
Ws 0.76

A surrogate model (ensemble of Random Forest and Gradient Boosting) is

The surrogate predicts cost values for all candidates, and the most promising
K are selected.
These K candidates are then fully evaluated; their true values are used to

Fig. 3. Workflow of the surrogate-assisted selection: predictions guide the filtering of
candidates, with only the top K undergoing full simulation.
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Finally, the restricted domain is shifted and expanded along the direction indi-
cated by this characteristic vector, forming a new, larger mother domain for
the subsequent phase.

Restricted Domain D

Fig. 4. Restricted domain D; with candidate particles (black) and selected promising
candidates (red). These guide the shift and expansion towards the next-level mother
domain.

Iteration 2: Sequential, Subdomain-based Exploration within the
Mother Domain.

— The mother domain is partitioned into a grid (or array) of non-overlapping
subdomains. Each subdomain has its own center, fixed size, and a margin to
allow for movement.

— Sub-iterations: Subdomains are processed one at a time, in sequence. For
each subdomain and at each sub-iteration:

1. New candidate particles are generated within the subdomain.

2. A subset is fully simulated; the surrogate model for the subdomain is
updated using these new data (surrogate particles furthest from the new
center are removed, and new ones are sampled; the surrogate is retrained
as in the initial domain).

3. The surrogate model is used to filter other candidates and identify the
most promising ones.

4. The best K candidates are fully validated. A characteristic vector for
the subdomain is computed (weighted average of top candidates).

5. The subdomain is shifted (and possibly reshaped) according to a PSO-
inspired rule, using its characteristic vector, the best positions found by
sequentially updated neighbors, and the global best.

— This process of sequential subdomain exploration and update is repeated for
a fixed number of sub-iterations (K7 ), allowing each subdomain to iteratively
refine its region and search direction within the mother domain.

— After K, sub-iterations, the best candidates from all subdomains are ag-
gregated to compute a global characteristic vector for the mother domain
(again, as a weighted average of the best candidates from each subdomain).
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— The mother domain is then shifted and, if appropriate, expanded along the
direction of this global characteristic vector, producing a new, larger domain
for the next hierarchical level.

Mother Domain W

___________________________

|:| Initial subdomain
Moved subdomain

® Initial center
® Updated center

—> Movement direction

Fig.5. Visualization of the mother domain W: multiple subdomains (colored
squares), each with an initial center (blue dot) and updated center (red dot) after
movement. Movement direction is visualized by arrows, as detailed in Section ?77?.

Iteration 3 and Beyond: Grandmother Domain and Mother Itera-
tions.

At the third iteration, the algorithm defines a new, larger grandmother
domain, which contains multiple mother domains as internal subregions. Each
mother domain, in turn, contains its own grid of subdomains.

Within the grandmother domain, mother iterations are performed, where
each mother domain is sequentially explored and updated. For each mother
domain:

1. The internal structure (subdomains) is processed through multiple sub-iterations
as described in Iteration 2, including surrogate model updates and PSO-
inspired movement for subdomains.

2. The best candidates from all subdomains are aggregated to define a charac-
teristic vector for the mother domain.

3. The mother domain is then shifted (and possibly expanded) according to
its characteristic vector. This process is repeated for a predefined number of
mother iterations or until a stopping criterion is met.

Once all mother domains within the grandmother domain have completed
their mother iterations, the best candidates from each mother domain are col-
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lected. A new global characteristic vector for the grandmother domain is com-
puted as a weighted average of the top solutions from all mother domains.

The grandmother domain is always expanded and shifted along the direc-
tion of this global characteristic vector, enabling the algorithm to systematically
explore increasingly larger and more promising regions of the parameter space.

This hierarchical process can be recursively repeated, introducing higher-level
domains (e.g., great-grandmother domain), each responsible for coordinating the
expansion and movement of domains at the next lower level.

Figure 6 illustrates the grandmother domain as a large dashed square con-
taining multiple mother domains, each represented by a colored square enclos-
ing a single subdomain image. Arrows indicate the movement directions of the
mother domains within the grandmother domain, visualizing their coordinated
exploration and shifting behavior during the mother iterations.

Grandmother Domain

é\."' \’”;
FEAN ,/\i
Iy |
i 7 A
= A \/é
B 4 N

Fig. 6. Grandmother domain containing mother domains, each composed of a single
subdomain represented by one image. Arrows indicate the movement direction of each
mother domain.

Summary of the Full Hierarchical, Sequential Procedure:

1. Start with a restricted domain where many candidate solutions (particles)
are generated. A surrogate model is trained on a subset of fully evaluated can-
didates to predict the cost of others quickly, enabling efficient pre-selection.

2. Using surrogate predictions, the most promising candidates are identified
and fully evaluated. Their results refine the surrogate model, improving its
accuracy.
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3. The best candidates from this process determine a characteristic vector that
guides the search direction. The restricted domain is then shifted and ex-
panded, forming a larger mother domain.

4. The mother domain is divided into smaller subdomains. Within each, can-
didate solutions are generated and evaluated using the surrogate-assisted
approach, iteratively updating the surrogate model and refining candidate
selection.

5. This sequential subdomain exploration and surrogate-assisted updating is
repeated multiple times to thoroughly explore the mother domain.

6. Results from all subdomains are aggregated to update and possibly enlarge
the mother domain for the next iteration.

7. A grandmother domain is then defined, encompassing several mother
domains. Each mother domain undergoes multiple iterations of surrogate-
assisted exploration within its subdomains.

8. Aggregated outcomes from mother domains are used to update and expand
the grandmother domain.

9. This hierarchical process continues recursively for higher-level domains until
the cost function shows no significant improvement or computational limits
are reached.

This framework guarantees a strictly sequential, hierarchical, and surrogate-

assisted domain-as-particle PSO optimization, where each level (subdo-
main, mother domain, grandmother domain, etc.) is explored one after another.
Each domain at every hierarchical level is expanded according to a characteris-
tic vector constructed from the best solutions in its internal structure, ensuring
systematic, scalable, and robust exploration of the solution space.

2 Experimental Results

2.1 Comparison of PSO Variants

To evaluate the effectiveness of the proposed Domain-as-Particle PSO (DAP-
PSO), we compared its performance against the classical Standard PSO. Both
algorithms were applied to the same PID tuning problem under identical search
bounds, ensuring a fair comparison.

Figure 7 illustrates the convergence behaviour of the two methods. The Stan-
dard PSO (blue curve) started from an initial best cost of approximately 0.047
and showed a rapid initial improvement. However, it quickly stagnated at a
relatively high cost value (= 0.036), failing to achieve further progress. This
behaviour is consistent with the known limitations of PSO in high-dimensional
or rugged landscapes, where particles may prematurely converge to local min-
ima [12].

In contrast, the Domain-as-Particle PSO (orange curve) began with an ini-
tial best cost of about 0.024 and demonstrated a markedly superior convergence
pattern. The algorithm maintained steady improvements across global iterations,
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ultimately reaching a significantly lower cost in the range of 0.010-0.011. This
result confirms that the hierarchical structure of DAP-PSO improves both explo-
ration and exploitation: local searches within each domain enable fine-grained
optimization, while global domain updates prevent stagnation and guide the
swarm towards better regions of the search space. Overall, the results clearly in-
dicate that DAP-PSO not only avoids premature convergence but also achieves a
more stable and accurate tuning of the PID controller, consistent with other ad-
vanced PSO-based control strategies found in robotics and motion systems [13].

PSO vs DAP-PSO Convergence

—— Standard PSO
0.045 4 DAP-PSO

0.040 4

0.035 4

0.030 4

0.025 4

Best Cost (MSE)

0.020 4

0.015 4

0.010 4

lteration

Fig. 7. Convergence comparison between Standard PSO (blue) and Domain-as-Particle
PSO (orange). Standard PSO starts at ~ 0.047 and stagnates at =~ 0.036, while DAP-
PSO starts at =~ 0.024 and converges to a significantly lower final error of about
0.010-0.011.

2.2 Algorithm Parameters

Table 1 summarizes the main hyperparameters used for both Standard PSO
and DAP-PSO. These values were carefully selected to ensure a fair comparison.
The Standard PSO relies on a large swarm size to compensate for its limited
exploration capacity, while DAP-PSO leverages its hierarchical, domain-based
structure, which allows for a more efficient distribution of computational effort.

2.3 Computational Time Analysis

A further set of experiments was performed to investigate the trade-off between
solution quality and computational cost. Since the Domain-as-Particle PSO per-
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Table 1. Hyperparameter configuration of Standard PSO and Domain-as-Particle
PSO.

Parameter Standard PSO DAP-PSO
Number of particles per swarm 1000 10
Number of domains — 10
Local iterations per domain — 5
Global iterations 30 30
Neighbourhood size (k) — 10
Inertia weight (w) 0.7 0.7
Cognitive/social factors (c1,c2) 1.5, 1.5 1.5, 1.5
Search bounds (PID parameters)|(0,3) x (0,0.5) x (0,0.5) x (1,10) x (0,1)| Same

forms multiple local searches within each domain and requires frequent surrogate
updates, its runtime per iteration is inherently higher than that of Standard PSO.

To establish a fair comparison, we matched the computational budgets of
the two algorithms. Specifically, the Standard PSO was executed both with its
baseline settings (1000 particles, 30 iterations) and with a scaled-up configuration
(2000 particles, 60 iterations), such that its total runtime approximately equaled
that of the proposed DAP-PSO.

Table 2 reports the results. In the baseline configuration, Standard PSO con-
verged to a cost of 0.036, which already lagged significantly behind DAP-PSO.
When forced to run longer with more particles, Standard PSO only marginally
improved its final solution, reaching 0.028, but still performed considerably worse
than DAP-PSO, which consistently achieved an error of around 0.010. This
demonstrates that the improved performance of DAP-PSO cannot be attributed
merely to increased computation time: rather, it stems from its hierarchical and
sequential design, which balances exploration and exploitation more effectively.

Table 2. Runtime and solution quality under equal time budgets.

Configuration Final Cost|Runtime
Standard PSO (1000p, 30 iters) 0.036 Trso
Standard PSO (2000p, 60 iters) 0.028 | ~Tpap
DAP-PSO (10 dom., 10p, 30 glob., 5 loc.) 0.010 Tpap

Figure 7 visually confirms this result: even when given a longer runtime,
Standard PSO exhibits stagnation at suboptimal solutions, while DAP-PSO
demonstrates steady progress and eventually converges to a significantly bet-
ter minimum.

As highlighted, the hierarchical nature of DAP-PSO allows the algorithm to

escape premature convergence, redistribute computational effort across multiple
subdomains, and focus exploration on promising regions of the search space.
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2.4 Future Improvements

While the current version of DAP-PSO already shows a clear advantage over
Standard PSO, several avenues for improvement remain:

— Surrogate-Assisted Exploration: A promising extension involves inte-
grating surrogate models (e.g., Random Forests, Gaussian Processes, or Gra-
dient Boosting) to approximate the cost function within each domain. In-
stead of fully evaluating all candidate solutions, only a subset would be com-
puted exactly, while the surrogate rapidly predicts the rest. This approach
could dramatically reduce computational overhead while preserving solution
accuracy.

— Adaptive Domain Expansion: Currently, domain expansion follows fixed
rules based on characteristic vectors. A more adaptive mechanism could be
introduced, where expansion ratios depend on observed variance in candidate
performance. This would prevent unnecessary enlargements in stable regions
while encouraging broader searches in high-uncertainty areas.

— Parallelization Strategies: Since each domain or subdomain can be ex-
plored independently, the algorithm is naturally suited for parallel execution
on modern GPU or cloud-based architectures. Parallelization could further
accelerate runtime without compromising quality.

— Dynamic Hierarchy Depth: The hierarchy (subdomains — mother do-
main — grandmother domain) could be adjusted dynamically. For example,
if improvements saturate at the mother domain level, the algorithm may
skip forming a grandmother domain, thus saving time.

— Hybridization with Classical PSO: Finally, combining DAP-PSO with
elements of classical PSO (e.g., periodically reintroducing global swarm move-
ment) could enhance robustness, particularly for extremely rugged or noisy
fitness landscapes.

These improvements would not only enhance the scalability of DAP-PSO but
also make it suitable for real-time or large-scale industrial applications, where
both accuracy and efficiency are crucial.
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